Title: Exploring the Binomial Probability Distribution

Link to Outcomes:

• Communication Students will be able to express results of data collection by using

charts/tables and histograms.

• **Probability** Students will demonstrate an understanding of the binomial

probability distribution.

• **Technology** Students will use data generated by the TI-82 graphics calculator.

Brief Overview:

Students will simulate the binomial probability distribution using two methods: an exercise in coin-flipping and a TI-82 calculator program.

Grade/Level:

Grades 9-12

Duration/Length:

This lesson is expected to take 3-4 class periods, depending on the amount of time spent discussing related theory and developing necessary calculator skills.

Prerequisite Knowledge:

Students should:

- understand the Fundamental Counting Principle.
- be familiar with counting outcomes via a tree diagram.
- be able to compute ${}_{n}C_{r}$.

Objectives:

Students will:

- form a tally sheet of the results of coin flips.
- form a histogram of the coin flip results, both individual and class.
- compute related probabilities via the binomial distribution formula.
- generate data with a computer simulation.
- use the TI-82 to show a histogram of a set of data.

Materials/Resources/Printed Materials:

- TI-82 graphics calculators
- Graph paper
- Rulers
- Worksheets for tallies and histograms
- Coins

Development/Procedures:

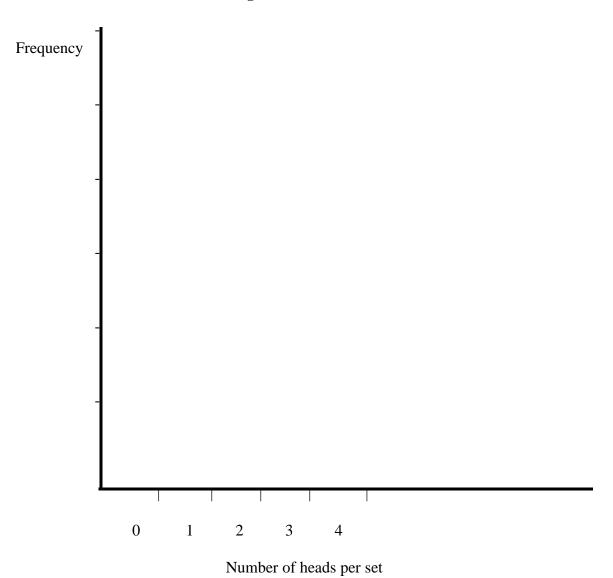
- Explain the four conditions of the binomial probability experiment.
 - a. There must be a finite number of trials.
 - b. There are only 2 possible outcomes (success or failure) per trial.
 - c. The probability of success remains the same from trial to trial.
 - d. The trials are independent.
- Discuss the possible outcomes (i.e., number of heads) on a single flip of 4 coins, using a tree diagram and list the probability of each outcome(0, 1, 2, 3, or 4 heads)
- Have students perform the coin-flipping experiment as described on Worksheet 1.
- Use the data to draw a histogram of each individual student's data.
- Tabulate class data and draw a second histogram.
- Use the TI-82 to compare the two histograms with theoretical frequencies from the tree diagram.
- Guide students in using the probability distribution formula $P(r) = {}_{n}C_{r}(p)^{r}(1-p)^{n-r}$.
- Simulate the coin-tossing experiment using a TI-82 program.
- Have students draw a histogram of the TI-82 program simulation.

Evaluation:

The teacher will circulate as the students perform the simulations and construct the histograms. The histograms and the results will be used to determine grades.

Extension/Follow Up:

Encourage students with programming skills to write a computer simulation of the coinflipping experiment using dice, with the two outcomes being "odd" and "even."

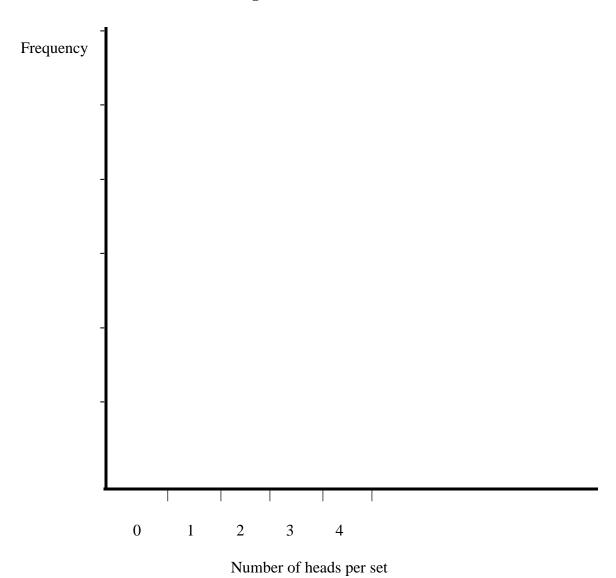

Authors:

Carol West Elizabeth Seton High School Prince Georges County Carvel LaCurts Pocomoke High School Worcester County

Nomo									
Name									
Date Period									
renou			Worksheet	t 1 - Coin-Flippi	ing l	Exper	iment	t	
-	Tabulate th	-		e results in the bere you get 0, 1,					-
Record of	flips		Ni	umber of heads	0		LY SH 2		


Name	
Date	
Period	

Histogram of Individual Data


Name	
Date	
Period	

Histogram of Class Data

Name	
Date	
Period	

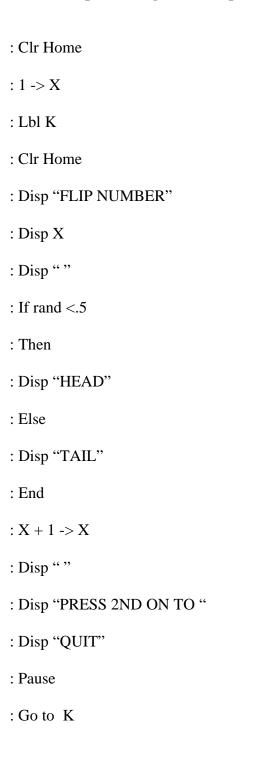
Histogram of TI-82 Simulation

Number of Heads	P(H) determined by relative frequency	P(H) determined by formula
0		
1		
2		
3		
4		

Binomial Probability Distribution Formula

$$P(r) = {}_{n}C_{r}(p)^{r} (1-p)^{n-r}$$

P(r) = Probability of r heads in a set of n flips


n= Number of flips per set

r = Number of heads

p = Probability of getting a success on any one trial (flip)

 $_{n}C_{r}$ = combination of n objects(coin flips per set) taken r (heads) at a time

TI-82 Computer Program - "Flip Coin"

